CHARLES WILLIAMS STREAM, WETLAND, AND BUFFER SITE DMS Project No. 80

MONITORING YEAR 3 (2015) Construction Completed February 2013 Planting Completed February 2014

Randolph County, NC State Construction Project No. 07-07125-01A

Prepared for the NC Department of Environmental Quality Division of Mitigation Services

> 1652 Mail Service Center Raleigh, NC 27699-1652

FINAL REPORT November 2015

Prepared by:

1151 SE Cary Parkway, Suite 101 Cary, NC 27518 919.557.0929 www.ecologicaleng.com

David G. Cooper

David G. Cooper, Project Scientist

Under Contract With:

This assessment and report are consistent with NCDENR Division of Mitigation Services Template Version 1.4 (11/07/11) for Monitoring Reports.

TABLE OF CONTENTS

1.0 EXECUT	IVE SUMMARY/PROJECT ABSTRACT	
1.1	Goals and Objectives	
1.2	Background Summary	
1.3	Vegetation Condition and Comparison to Success Criteria	
1.4	Stream Stability/Condition and Comparison to Success Criteria	
1.5	Wetland Condition and Performance Relative to Success Criteria	-
1.6	Other Information	3
2.0 METHO	DOLOGY	5
3.0 REFERE	NCES	6
	A. Project Vicinity Map and Background Tables	
	1. Project Components and Mitigation Credits	
	2. Project Activity and Reporting History	
	3. Project Contact Table	
	4. Project Baseline Information and Attributes	
	B. Visual Assessment Data	
Figure	2. Mitigation Components	

Page

Figure 2. Mitigation Components Figure 3. Current Condition Plan View (CCPV) Table 5. Visual Stream Morphology Stability Assessment Table Table 6. Vegetation Condition Assessment Table Photograph Comparisons

APPENDIX C. Vegetation Plot Data

Planted Vegetation Summary Proposed Supplemental Planting Letter Original Planting List from DMS Table 7. Vegetation Plot Mitigation Success Summary Table Table 8. CVS Vegetation Metadata Table Table 9. CVS Stem Count Total and Planted by Plot and Species

APPENDIX D. Stream Survey Data

Cross Section Plot Exhibits Longitudinal Profile Plot Exhibit Cross Section Pebble Count Exhibits Table 10. Baseline Stream Data Summary Table 11. Monitoring Data

APPENDIX E. Hydrology Data

Table 12. Verification of Bankfull Events2015 Precipitation Data Chart

APPENDIX F. Detailed Thalweg Profile

Detailed Thalweg Longitudinal Profile Plot Exhibits

1.0 EXECUTIVE SUMMARY/ PROJECT ABSTRACT

The Charles Williams Stream, Wetland and Buffer Site, hereinafter referred to as the "Project Site" or "Site," is located in Randolph County, North Carolina, within US Geological Survey (USGS) 8-digit Hydrologic Unit Code (HUC) 03030003 and NC Division of Water Resources (NCDWR) sub-basin 03-06-09 of the Cape Fear River Basin (Figure 1). The project involved the enhancement of 1,850 linear feet of an unnamed tributary (UT) to Sandy Creek, 2.2 acres of wetlands and 8.8 acres of riparian buffer. The Site is protected for perpetuity under a conservation easement purchased from Mr. Charles Williams in 2006. Project restoration components, activity and reporting history, contacts and attribute data are all provided in Appendix A.

1.1 Goals and Objectives

The Project's goals were to:

- reduce nutrient and sediment water quality stressors;
- provide for uplift in water quality functions;
- improve instream and wetland aquatic habitats, including riparian terrestrial habitats; and,
- provide for greater overall instream and wetland habitat complexity and quality.

Stream enhancement, the primary component, served as the dominant input for achieving this goal.

No restoration goals were identified in the Cape Fear River Basinwide Management Plan (NCDWQ, 2005) with regard to the Sandy Creek watershed. There were no sources or stressors listed for the watershed area associated with the Project Site. The NC Department of Environment and Natural Resources (NCDENR) Division of Mitigation Services (DMS) develops River Basin Restoration Priorities (RBRP) to guide its restoration activities within each of the state's 54 cataloging units. RBRPs delineate specific watersheds that exhibit both the need and opportunity for wetland, stream and riparian buffer restoration. These watersheds are called Targeted Local Watersheds (TLWs) and receive priority for DMS planning and restoration project funds. The 2009 Draft Cape Fear River RBRP identified HUC 03030003020010, which includes the Project Site, as a Targeted Local Watershed. The following information is taken directly from the RBRP. "...This is a largely rural hydrologic unit (HU). The main stream, Sandy Creek, flows through Randolph County to Sandy Creek Reservoir, a drinking water supply for Ramseur and Franklinville. As of 2006, the HU had no streams on DWQ's list of impaired waters; however, the reservoir shows indications of high nutrient levels, likely related to the large number of animal operations in the HU. The HU is a Water Supply Watershed and a long portion of Sandy Creek is recognized by the State's Natural Heritage Program as a Significant Natural Heritage Area. DMS has been active in the HU with five projects that include components of preserving wetlands (3 acres) and streams (5,100 linear feet) and restoring wetlands (15 acres) and streams (15,000 linear feet). Piedmont Land Conservancy has also been active in protecting streamside buffers in the HU. Continued implementation of practices to reduce nutrient inputs to Sandy Creek Reservoir is recommended for this HU."

1.2 Background Summary

The Project Site is situated in northeastern Randolph County, approximately four miles west of Liberty and six miles north of Ramseur (Figure 1). It is bordered to the north and west by undeveloped land, to the east by SR 2442 (Ramseur-Julian Road), and to the south by Sandy Creek. Northeastern Randolph Middle School is on the property opposite of Sandy Creek, to the south. The Project Site can be accessed by using the following directions from US Highway 64.

- Turn north on US 421 in Siler City, towards the Town of Liberty.
- Proceed approximately 9.5 miles and turn south (left) onto NC 49.
- Proceed approximately 0.7 miles along NC 49 and turn north (right) onto SR 2459 (Sandy Creek Church Road).
- Follow Sandy Creek Church Road approximately 4.5 miles until it intersects with Ramseur-Julian Road and turn north (right),
- Follow Ramseur-Julian Road approximately 0.3 miles, crossing over Sandy Creek. The Charles Williams Site is on the west (left) side of the roadway, immediately north of Sandy Creek.

Situated in the Piedmont physiographic province and the Cape Fear River Basin, the Project Site encompasses 18 acres of former pasture and existing riparian forest. Elevations across the Site range between approximately 550 and 560 feet above Mean Sea Level. The following chart depicts pre-implementation existing condition information regarding the Site.

	j :	,	
Physiographic Province	Piedmont	County	Randolph
River Basin Name	Cape Fear	Property Owner Name	Charles Williams
USGS 8-digit HUC	03030003		
USGS 14-digit HUC	03030002020010	Stream #1 Name	UT to Sandy Creek
NCDWQ Subbasin	03-06-09	Drainage Area	4.9 sq. mi.
Underlying Mapped Soil(s)	Chewacla loam	NCDWQ Score	(Perennial)
Drainage Class	Somewhat poorly drained	Rosgen Classification	C5
Hydric Status	В	_	
Slope	0-2 %		
Available Water Capacity	Moderate to High		
FEMA Classification	Zone AE		
Invasive Vegetation Observed	Multiflora rose (Rosa multif	lora)	
-	Chinese privet (Ligustrum	sinense)	

Pre-Implementation Existing Conditions Summary

1.3 Vegetation Condition and Comparison to Success Criteria

Vegetation success criteria are consistent with the US Army Corps of Engineers (USACE) Wilmington Regulatory District's guidance for stream and wetland mitigation and the NCDENR's guidance for riparian buffer credit. The USACE guidance requires the survival of a minimum of 320 planted woody stems/acre after Monitoring Year 3 (MY3). A mortality rate of 10% is allowed after MY4 assessments (288 stems/acre) and, correspondingly, after MY5 assessments (260 stems/acre). The NCDENR guidance requires survival of at least 320 native, planted, hardwood stems/acre (trees only) at the end of the MY 5 to successfully earn riparian buffer credit.

Vegetation is currently being assessed using plot layouts consistent with the Carolina Vegetation Survey (CVS) Level II Vegetation Protocol. Stem count data is ascertained from 12 permanently placed 10-meter² vegetation plots (Figures 3a and 3b). Assessments include counts of both planted and natural stems. Due to low stem counts during MY2, supplemental planting of species in the original planting list at approximately 300 stems per acre was performed between December 2014 and March 2015. Based on the current monitoring effort, 12 of 12 vegetation plots met the minimum success criteria established for MY3 stream/wetland mitigation criteria and 12 of 12 plots met the criteria for riparian buffer credit. Appendices B and C depict more detailed information regarding the vegetation condition, including annual photograph comparisons and additional information regarding the proposed supplemental planting.

Due to the random placement of vegetation plots, only one of the eight plots associated with stream/wetland credit is currently placed within the wetland enhancement area (Vegetation Plot #6). The remaining seven plots are situated in non-wetland areas; however, based on current site conditions, three plots (Vegetation Plots #3, #7, and #8) may likely be in wetland areas by the time MY4 assessments are performed. The wetland status of the current plots will be reassessed during MY4 activities.

1.4 Stream Stability/Condition and Comparison to Success Criteria

Enhancement (Level I) of the UT utilized natural channel design methodologies consistent with Priority Level IV stream restoration protocols. These protocols specifically include the stabilization of the existing channel in place. To document successful stabilization, a minimum of two bankfull events must be documented within the standard five-year monitoring period. In order for the hydrology-based monitoring to be considered complete, the two events must occur in separate monitoring years.

A bankfull event was actively observed on April 17th, 2015 during a rainfall event. Additional evidence of this and other subsequent bankfull events was documented on June 30, 2015. Evidence consisted of wrack material and sediment staining above the bankfull indicators along the channel and alluvial deposits outside the channel. The crest gauge was checked in June 2015, but could not be successfully read due to a large aggregation of ants within the gauge. Annual photograph comparisons of the stream channel are depicted in Appendix B and hydrologic data associated with this year's monitoring assessment are provided in Appendix E.

1.5 Wetland Condition and Performance Relative to Success Criteria

Wetland enhancement work was performed throughout the existing wetland areas. Prior to enhancement, these wetlands were severely degraded as a result of continuous soil compaction and grazing from livestock. The enhancement work included livestock removal via exclusion fencing and supplemental plantings. Benefits of the enhancement include water quality improvement by trapping nutrients such as nitrogen and phosphorous, toxic substances, and disease-causing microorganisms. Wetlands also slow and intercept surface runoff, protect stream banks from erosion, protect upland areas from flooding, and provide valuable habitat for wildlife.

1.6 Other Information

Summary information/data related to the occurrence of items such as beaver dams or encroachment, and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the DMS website. All raw data supporting the tables and figures in the appendices is available from DMS upon request.

Boundary marking along the conservation easement using signage consistent with DMS guidelines was performed by Ecological Engineering on December 8, 2014, and is considered completed.

During MY2 monitoring, a recently constructed beaver dam was observed within the channel at approximately station 14+34.75. In May of 2015 during MY3 monitoring, another recently constructed beaver dam was observed immediately upstream of the culverted road crossing at approximately station 19+51.50. During June of 2015, these dams were removed by hand and beaver trapping was

conducted by APHIS. As of June 30, 2015, no additional beaver activity was observed within the easement area. Please refer to Appendix B for representative photographs.

Based on comments received pertaining to the stream stability monitoring, additional detail was collected during the MY3 longitudinal profile survey. Pattern and profile data was collected to represent the current state of the UT from the upstream, northern easement boundary downstream to the southern easement boundary. Please refer to Appendix D for a comparison of MY3 data with previous monitoring data. It is important to note that, because longitudinal profile survey shots were taken at different channel locations across the monitoring years, it is not possible to fully assess stream bed stability based on the current longitudinal profile comparison. Subsequent survey data in future monitoring years will be collected to the level of detail represented in MY3 data, which will allow an ongoing comparison of stream bed stability. An additional Appendix F is provided to depict the detailed longitudinal profile of the channel thalweg. For ease of comparison, this appendix consists of four sheets, each showing a reach of the channel thalweg at a larger scale than the chart in Appendix D.

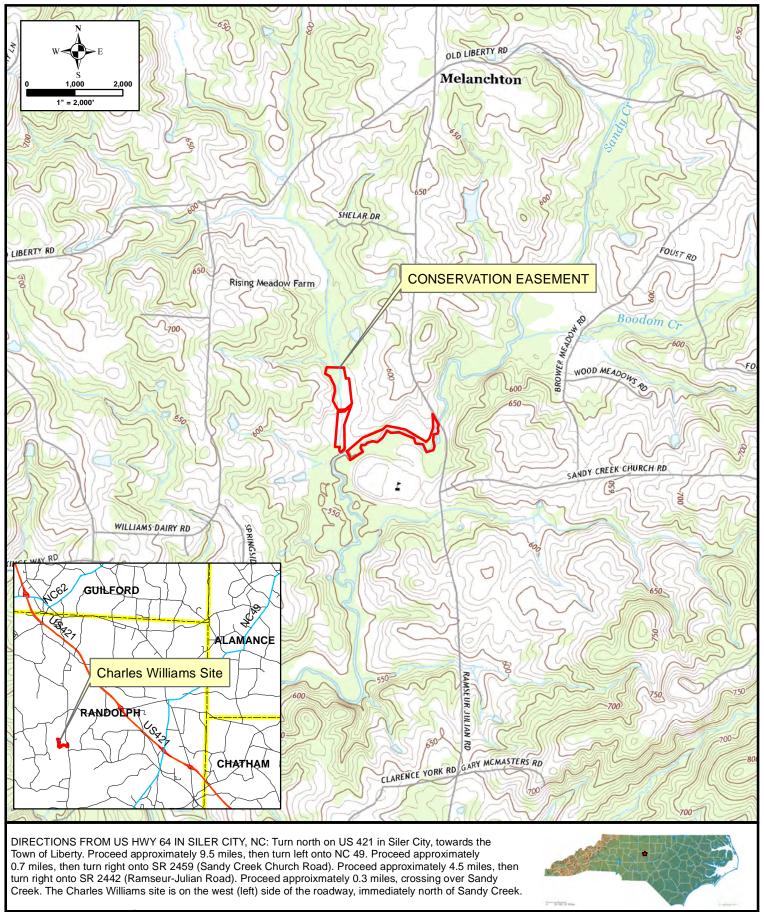
2.0 METHODOLOGY

This monitoring report follows methodology consistent with DMS's Procedural Guidance and Content Requirements for Monitoring Reports (Version 1.4, dated 11/07/11), available at the DMS website (http://portal.ncdenr.org/web/eep).

All surveys were performed via total station and survey grade Global Positioning System (GPS). Each survey point has three-dimensional coordinates and is tied to survey control points. Longitudinal profile stationing was originally developed based on the design stationing, and follows the UT from the northern to the southern property boundary (upstream to downstream) as depicted on the survey plat. Based on comments from DMS during the review of the draft MY2 monitoring report, the MY3 longitudinal profile survey incorporated more detailed data collection to more accurately represent changes in channel morphology over time. As the MY3 survey is a more complete longitudinal profile, channel stationing is more accurate than that shown in previous longitudinal profiles. In order to compensate for differences in stationing, channel survey shots from previous monitoring years were viewed in plan view and compared to MY3 channel stations. Stationing of previous years' shots was adjusted to reflect the more accurate MY3 channel stationing. Appendix D includes an overlay of channel survey data based on this adjusted stationing. Subsequent surveys will continue to collect the level of detail represented in the MY3 survey.

Particle size distribution protocols followed the Wolman Pebble Count Procedure, which requires an observer with a metric ruler to measure particles based on their intermediate axis. This information is correlated into a graph depicting a particle size analysis of the cross section.

Vegetation assessments were conducted using the CVS protocol (Version 4.2). As part of this protocol, vegetation is assessed using 100-meter² plots, or modules. The scientific method requires that measurements be as unbiased as possible, and that they be repeatable. Plots are designed to achieve both of these objectives; in particular, different people should be able to inventory the same plot and produce similar data (Lee et. al., 2006). According to Lee et. al. (2006), there are many different goals in recording vegetation, and both time and resources for collecting plot data are extremely variable. To provide appropriate flexibility in project design, the CVS protocol supports five distinct types of vegetation plot records, which are referred to as levels in recognition of the increasing level of detail and complexity across the sequence. The lower levels require less detail and fewer types of information about both vegetation and environment, and thus are generally sampled with less time and effort (Lee et. al., 2006). Level 1 (Planted Stem Inventory Plots) and Level 2 (Total Woody Stem Inventory Plots) inventories were completed on all 12 of the vegetation plots at the Project Site.


A crest gauge was installed near the downstream end of the Site along the UT to verify the on-site occurrences of bankfull events. In addition to the crest gauge, observations of recently deposited overbank wrack and/or sediment serve to validate gauge observations, as necessary. Documentation of the highest stage during the monitoring interval is assessed during each site visit and the gauge is reset. The data related to bankfull verification are summarized in each year's report. Based on the elevation of the crest gauge, any readings observed higher than 22 inches on the gauge reflect a bankfull or above bankfull event.

3.0 **REFERENCES**

- Lee, Michael T., R.K. Peet, S.D. Roberts and T.R. Wentworth, 2006. CVS Protocol for Recording Vegetation, Version 4.0 (<u>http://cvs.bio.unc.edu/methods.htm</u>).
- NCDENR Division of Water Quality (NCDWQ), 2005. Cape Fear River Basinwide Management Plan. Available at: <u>http://portal.ncdenr.org/web/wq/ps/bpu/basin/capefear</u>.
- NCDENR Ecosystem Enhancement Program, 2013. Charles Williams Stream, Wetland, and Buffer Site Baseline Monitoring Document and As-built Baseline Report. Prepared by Ecological Engineering, LLP.
- NC State Climate Office, 2014. Daily Precipitation Data from Siler City Airport (SILR), Chatham County (<u>www.nc-climate.ncsu.edu</u>).
- US Army Corps of Engineers, US Environmental Protection Agency, NC Wildlife Resources Commission and NC Department of Environment Division of Water Quality, 2003. Stream Mitigation Guidelines.

APPENDIX A

Project Vicinity Map and Background Tables

NCC Environmental Quality

PROJECT SITE VICINITY MAP Charles Williams Site -DMS Project No. 80

Map Source:

2013 Grays Chapel and Liberty USGS Quadrangles FIGURE 1

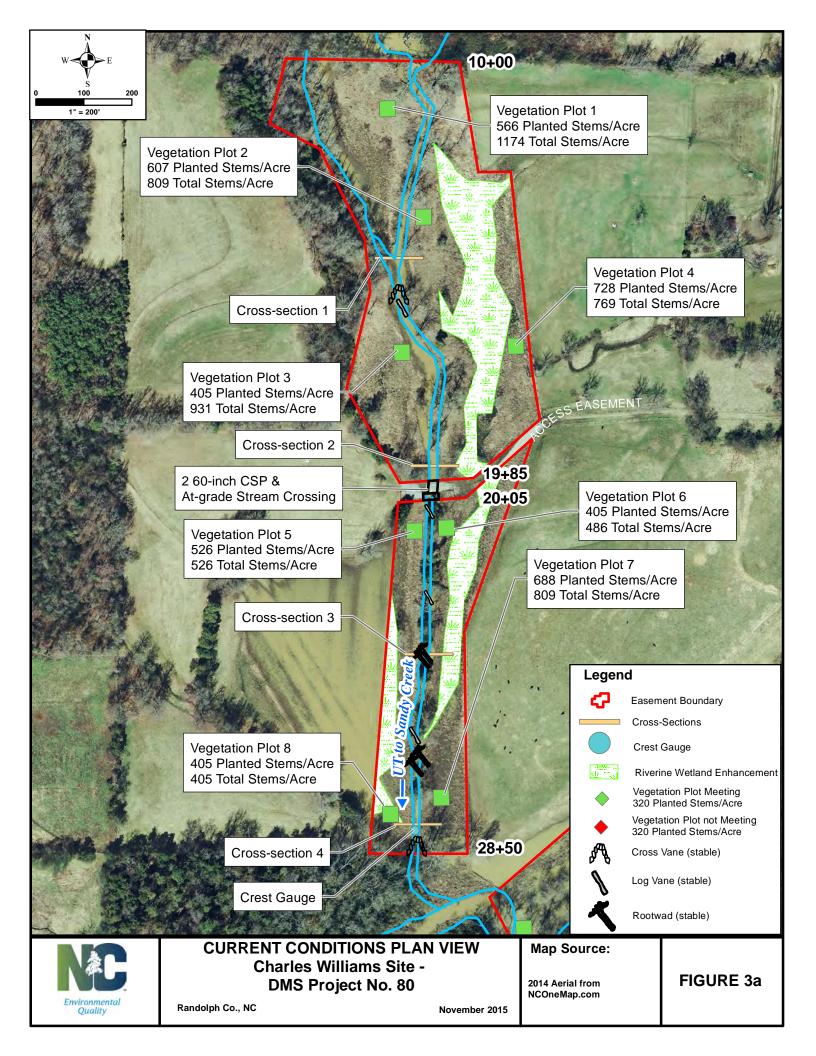
Randolph Co., NC

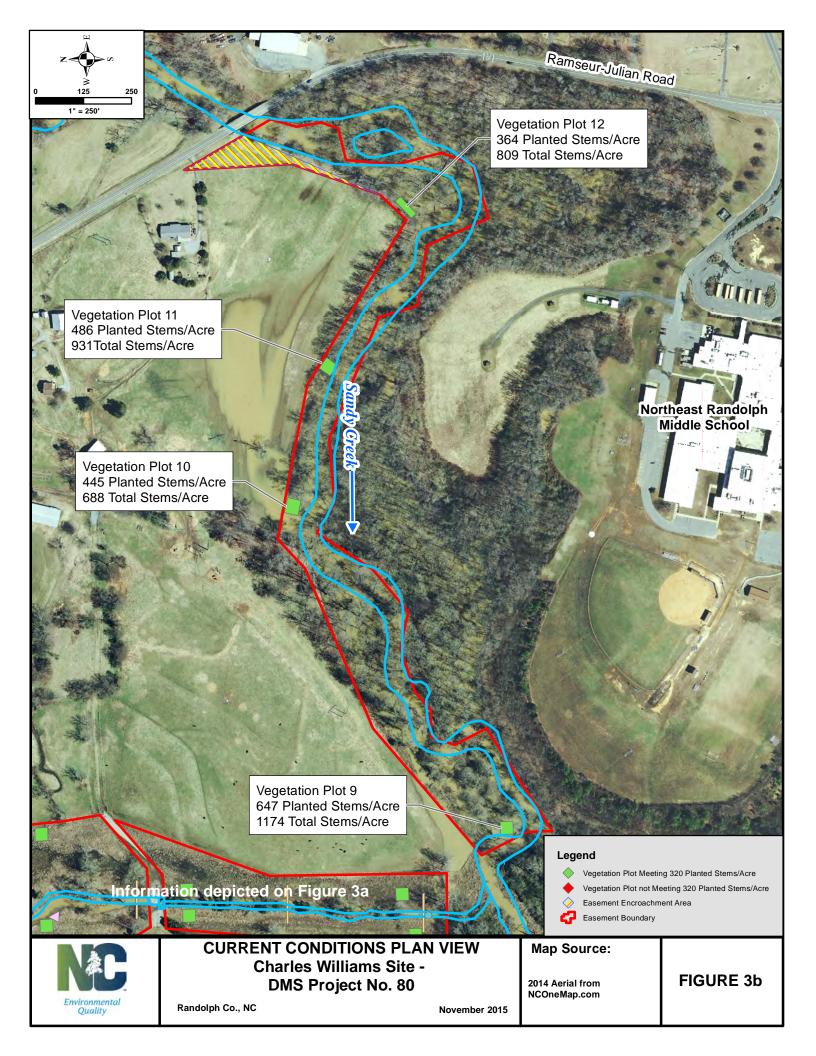
November 2015

StreamRiparian WetrandNon-riparian WetrandBufferNutrientTypeRRERRERRETotals1,2331.1336,430Project ComponentsProject ComponentStationing/LocationExisting Footage/ AcreageApproachRestoration or Restoration EquivalentRestoration Footage or AcreageMittig Restoration EquivalentStream Enhancement10+00 to 27+531,850 linear feetEIRE1,2331.1Riparian Wetland Enhancementareas east and west of UT to Sandy Creek2.2 acresERE1.12Buffer Restoration (TOB - 50)Sandy Creek and UT to Sandy Creek201,481 square feetRR201,4811Buffer Restoration (101' - 200)Sandy Creek and UT to Sandy Creek119,203 square feetRR119,2031Buffer Restoration (101' - 200)Sandy Creek and UT to Sandy Creek63,704 square feetRR15,9264Component Summation													
		Stream	Riparian	Wetland	Non-ripar	ian wetland	Buffer	Nutrient	Phosphorus Nutrient Offset				
Туре	R	RE	R	RE	R	RE							
Totals		1,233		1.1			336,430						
					Project Compor	ients							
Project Component	t	Stationir	ng/Location			Approach	Restoration	Footage or	Mitigation Ratio				
Stream Enhancemer	nt	10+00	to 27+53	1,850) linear feet	EI	RE	1,233	1.5 : 1				
				T 2.	2 acres	E	RE	1.1	2 : 1				
		Sandy Cre	ek and UT to	201,48	1 square feet	R	R	201,481	1:1				
	0'			119,20	3 square feet	R	R	119,203	1:1				
				63,704	square feet	R	R	15,926	4 : 1				
				C	omponent Sumi	mation	1	L					
Restoration Leve	el.	Stream (linear feet)	Riparian V	Wetland (acres)				Upland (acres)				
				Riverine	Non-riverine								
Restoration								384,208					
Enhancement				2.2									
Enhancement I		1,	850										
Enhancement II Creation		Image: Constraint of the second s											
Preservation													
HQ Preservation													
	<u> </u>				BMP Elemen	ts							
Element		Loc	cation	Purpos	se/Function		N	lotes					
BMP Elements													

BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area; FB = Forested Buffer.


Table 2. Project Activi Charles Williams Stream	ty and Reporting Histo Wetland and Buffer Site / 80	•
Elapsed Time Since Grading Co	mplete (Feb 2013): 2 years, 9 month	S
Elapsed Time Since Planting Co	omplete (Feb 2014): 1 year, 9 month	S
Number of R	eporting Years: 3	
Activity or Report	Data Collection Complete	Completion or Delivery
Mitigation Plan	September-08	May-09
Final Design - Construction Plans	November-09	April-12
Construction		February-13
Temporary S&E Mix Applied to Entire Project Area		January-13
Permanent Seed Mix Applied to Entire Project Area		January-13
Live Stake Plantings Applied		January-13
Baseline Monitoring Document	June-13	July-13
Bare-rooted Planting Applied		February-14
Year 1 Monitoring	March-14	May-14
Year 2 Monitoring	September-14	November-14
Year 3 Monitoring	June-15	November-15
Year 4 Monitoring		
Year 5 Monitoring		
Year 6 Monitoring (vegetation only)		


Table 3. Project Charles Williams Stream W Designer Ecological Engineering, LLP Jenny S. Fleming, PE Construction Contractor Riv envorks, Inc. Bill Wright Hauling Contractor Strader Fencing, Inc. Planting Contractor(s) Carolina Silvics, Inc. (bare-rooted & containerized) Mary-Margaret S. McKinney, RF, PWS Riv envorks, Inc. (liv estakes only) George Morris Seeding Contractor Strader Fencing, Inc. Kenneth L. Strader Seed Mix Sources Nursery Stock Suppliers (live stakes only) Monitoring Performer Ecological Engineering, LLP David Cooper, Heather Smith, Lane Sauls (stream, vegetation & wetland)	
Charles Williams Stream Designer Ecological Engineering, LLP Jenny S. Fleming, PE Construction Contractor Riv enworks, Inc. Bill Wright Hauling Contractor Strader Fencing, Inc. Planting Contractor(s) Carolina Silvics, Inc. (bare-rooted & containerized) Mary-Margaret S. McKinney, RF, PWS Riverworks, Inc. (liv estakes only) George Morris Steeding Contractor Strader Fencing, Inc. Kenneth L. Strader Steed Mix Sources Nursery Stock Suppliers (live stakes only) Monitoring Performer Ecological Engineering, LLP	
Designer	Firm Information/ Address
Ecological Engineering, LLP	1151 SE Cary Parkway, Suite 101, Cary, NC 27518
Jenny S. Fleming, PE	(919) 557-0929
Construction Contractor	Firm Information/ Address
Riverworks, Inc.	8000 Regency Parkway, Suite 800, Cary, NC 27518
Bill Wright	(919) 459-9001
Hauling Contractor	Firm Information/ Address
Strader Fencing, Inc.	5434 Amick Road, Julian, NC 27283
	(336) 697-7005
Planting Contractor(s)	Firm Information/ Address
Carolina Silvics, Inc. (bare-rooted & containerized)	908 Indian Trail Road, Edenton, NC 27932
Mary-Margaret S. McKinney, RF, PWS	(252) 482.8491
Riverworks, Inc. (livestakes only)	8000 Regency Parkway, Suite 800, Cary, NC 27518
George Morris	(919) 459-9001
Seeding Contractor	Firm Information/ Address
Strader Fencing, Inc.	5434 Amick Road, Julian, NC 27283
Kenneth L. Strader	(336) 697-7005
Seed Mix Sources	Green Resource, LLC (336) 855-6363
Nursery Stock Suppliers (live stakes only)	Native Roots Nursery (910) 385-8385 NC Forest Service Tree Nursery (919) 731-7988 Foggy Mountain Nursery (336) 384-5323 Mellow Marsh Farm (919) 742-1200
Monitoring Performer	Firm Information/ Address
Ecological Engineering, LLP	1151 SE Cary Parkway, Suite 101, Cary, NC 27518
David Cooper, Heather Smith, Lane Sauls (stream, vegetation & wetland)	(919) 557-0929


-			
Project Name	Charles Williams Stream Wetland and Buffer Site		
	Randolph		
	18 acres		
-	35°49'31.95" North/ 79°39'02.64" West		
Project Waters	hed Summary Information		
Physiographic Province	Piedmont		
	Cape Fear		
	·		
, , , , , , , , , , , , , , , , , , , ,			
	Agricultural Land		
Reach S	ummary Information		
Length of Reach	1,850 linear feet		
Valley Classification	Valley Type VIII		
Drainage Area	4.9 sq. mi.		
County Randolph Project Area 18 acres Project Coordinates (latitude and longitude) 35°49'31.95" North/ 79°3902.64" West Project Coordinates (latitude and longitude) Project Watershed Summary Information Physiographic Province Piedmont River Basin C ape Fear USGS Hydrologic Unit 8-digit 03030003 USGS Hydrologic Unit 8-digit 03030003 DWQ Subbasin 03-06-09 Project Drainage Area 4.9 sq. mi. Project Drainage Area 5 to 6% CGIA Land Use Classification Agricultural Land Reach Summary Information Length of Reach 1,850 linear feet Valley Classification Valley Type VIII			
Charles Williams Stream Wetland and Buffer Site / 80 Project Information Project Name Charles Williams Steam Wetland and Bufler Site. County Randoph Project Area 18 acres Project Area 18 acres Project Coordinates (latitude and longitude) 35*4731.95* Kurth 79*3702.64* West Project Vaterabled Summary Information Pedmond Name Corpo Fox* USGS Hydrologic Unit 8-digit 0300000 USGS Hydrologic Unit 8-digit 0300000 USGS Hydrologic Unit 8-digit 030000 USGS Hydrologic Unit 8-digit 0300000000000000000000000000000000000			
Morphological Description (stream type)	C5		
Evolutionary Trend	C-G-F-E-C		
-	Chewacla loam		
-	-		
-			
••			
Charles Williams Stream Welland and Buffer Site / 80 Project Information Project Name Charles Williams Stream Welland and Buffer Site County Rankigh Project Name Charles Williams Stream Welland and Buffer Site Project Name Charles Williams Stream Welland and Buffer Site Project Name Charles Williams Stream Welland and Buffer Site Project Coordinates (lafitude and longitude) 25:49731 % North 79:3902.64* West Project Drainage Area Cape Fear USGS Hydrologic Unit 4-digit Condoctococococococococococococococococococ			
Charles Williams Stream Wetland and Buffer Site / 80 Project Name Charles Williams Stream Wetland and Buffer Site County Readupt Project Area Charles Williams Stream Wetland and Buffer Site County Readupt Project Area Charles Williams Stream Wetland and Buffer Site Project Area Charles Williams Stream Wetland and Buffer Site Project Coordinates (latitude and longitude) Site / S			
Charles Williams Stream Welland and Buffer Site / 80 Project Information Project Name Charles Willioms Stream Welland and Bufler Site Ocounty Bactes Project Area Bactes Project Area Bactes Project Coordinates (lafitude and longitude) 25:49/31 %5" North 79:3902.64" West Project Watershed Summary Information Project Watershed Summary Information Project Drainage Area Cape Fear USGS Hydrologic Unit 4-digit 030000020010 OWO Subbain 030200010 OWO Subbain 030200010 OWO Subbain 03020010 OWO Subbain 030			
Essential Fisheries Habitat	Not Applicable		

APPENDIX B

Visual Assessment Data

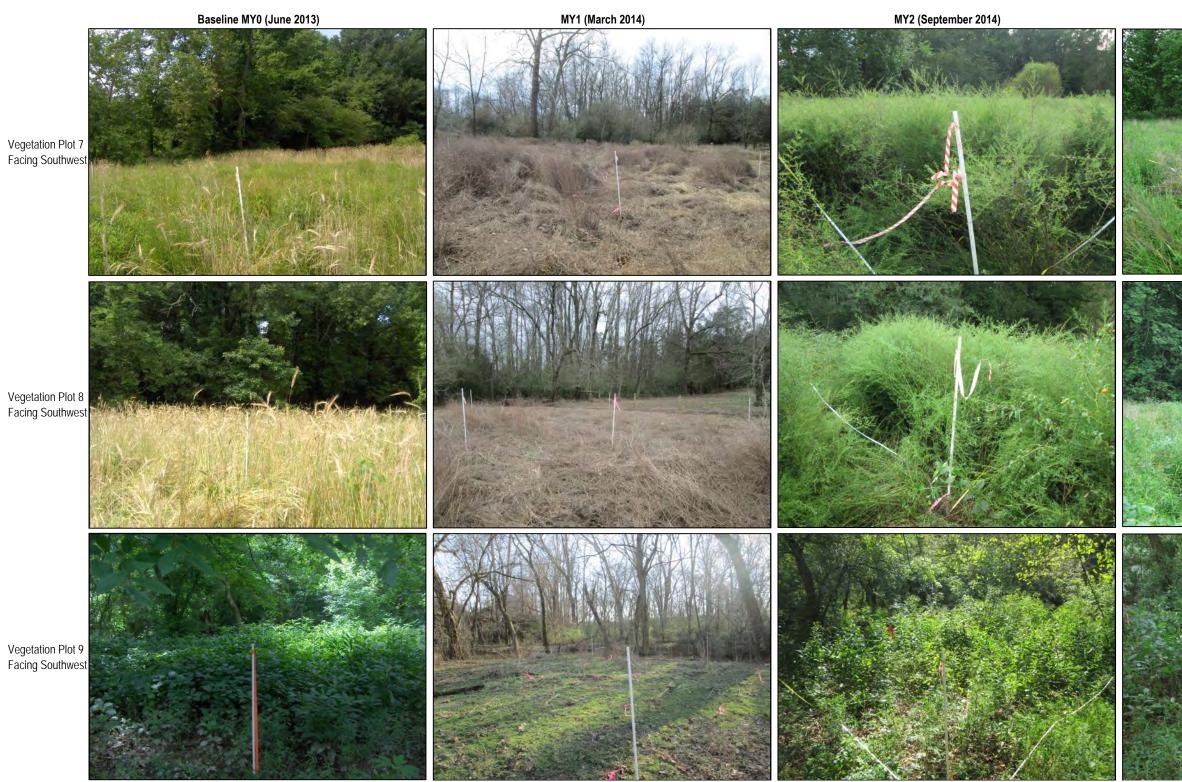

		Table 5. Visual Stream Morphology Assessment Assessed Length: 1,850 linear feet Charles Williams Stream, Wetland, and Buffer Site / 80	n Morpho gth: 1,850 li n, Wetland, a	logy Ass near feet and Buffer	sessmen Site / 80	tt				
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	F ootage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars). Degradation - Evidence of down-cutting.		·	0 0	0 0	100			
	Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate.			0	0	100			
Bed	M eander Pool	Depth - Sufficient (Max. Pool Depth : Mean Barkfull Depth ratio > 1.6).	4	5			80			
	C ondition	Length - Appropriate (>30% of centerline distance between tail of upstream riffe and head of downstream riffe).	4	5			80			
	Thatwed Position	Thalweg centering at upstream of meander bend (run).	8	8			100			
		Thalweg centering at downstream of meander bend (glide).	7	8			88			
	Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100	none	none	n/a
Bank	U ndercut	Banks undercul/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100	none	none	n⁄a
	Mass Wasting	Bank slumping, calving, or collapse.			0	0	100	none	none	n/a
				Totals	0	0	93	n/a	n/a	n/a
	Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			8			
	Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			3			
Engineered Structures	Piping	Structures lacking any substantial flow underneath sills or arms.	ω	œ			8			
	Bank Protection	Bank erosion with the structures extent of influence does NOT exceed 15%.	8	8			8			
	H abitat	Pool forming structures maintaining - Max. Pool Depth : Mean Bankfull Depth ratio _ 1.6. Rootwads/logs providing some cover at base-flow.	с	з			3			

	Table 6. Vegetation Co	ondition A	Assessme	ent		
	Charles Williams Stream, W	etland, and	Buffer Site	/ 80		
Planted Acreage:	16 acres		1			
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	n/a	n/a	n/a	n/a
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY 3, 4, or 5 stem count criteria.	0.1 acres	n/a	0	n/a	n/a
			Total	n/a	n/a	n/a
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that is obviously small given the monitoring year.	0.25 acres	n/a	n/a	n/a	n/a
		Cum	ulative Total	n/a	n/a	n/a
Estimated Acreage:	18 acres					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1,000 SF	Not depicted – invasives are found singly throughout easement	0	<.1 acres	<1%
			after treatment			

Charles Williams Stream, Wetland, and Buffer Site / 80 - Annual Photograph Comparison

MY3 (June 2015)

Vegetation Plot 10 Facing Southwest

Vegetation Plot 12 Facing Southwest

MY3 (June 2015)

Cross Section 1 Facing West

MY3 (June 2015)

Cross Section 2 Facing West

Cross Section 2 Facing Downstream

Cross Section 3 Facing West

Cross Section 3 Facing Downstream

Cross Section 4 Facing West

Cross Section 4 Facing Downstream

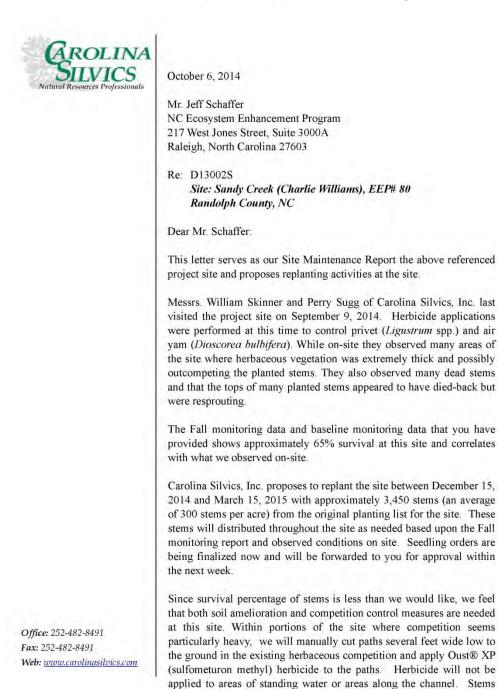
Beaver Dams MY3

St. She

1100 2 1

Trains

4. Sediment Staining Documented 30 June 2015


APPENDIX C

Vegetation Plot Data

Planted Vegetation Summary

During MY3 monitoring, new stems were documented from a supplemental planting performed by Carolina Silvics in early 2015. Stem density was observed to be adequate in 12 of the 12 vegetation plots. Please refer to the letter and tables below.

Proposed Supplemental Planting Letter

will then be replanted into these paths. Conversely, in areas where general vegetative growth is sparse, we will apply a slow release fertilizer at time of planting to improve general soil fertility in those areas.

We will notify you in advance of our replanting and maintenance activities on this site. We request that a member of your staff be onsite with us as we begin these actives so that proper distribution of the seedlings can be agreed-upon in the field by all parties.

Please know that Carolina Silvics, Inc. is committed to the success of this project and will take the measures necessary to ensure that we remain in contract compliance. If you have any questions regarding this report or our proposed replanting and maintenance activities, please contact me at (252) 482-8491 or mary-margaret@carolinasilvics.com.

Respectfully,

CAROLINA SILVICS, INC.

Severenny Zindkinned

Mary-Margaret McKinney, RF President

Office: 252-482-8491

Fax: 252-482-8491

Web: www.carolinasilvics.com

Original Planting List from DMS

Species	Туре	Ripa Qty	arian %	Wet Qty	tland %	Nursery
Betula nigra	2-0 BR	300	10%	100	11%	NCFS
Carya glabra	2-0 BR	100	3%			NCFS
Carya tomentosa	2-0 BR	200	7%			NCFS
Fraxinus pennsylvanica	2-0 BR	275	9%	100	11%	NCFS
Liriodendron tulipifera	2-0 BR	400	13%			NCFS
Platanus occidentalis	2-0 BR	225	7%	200	23%	NCFS
Quercus falcata var. pagodiafolia	2-0 BR	300	10%	100	11%	NCFS
Quercus nigra	2-0 BR		I frankriger i s	100	11%	NCFS
Quercus phellos	2-0 BR	600	20%	200	23%	NCFS
Quercus rubra	2-0 BR	300	10%	2		NCFS
Amelanchier arborea	1-gal	25	1%			Native Roots
Carpinus caroliniana	1-gal	85	3%			Native Roots
Chionanthus virginicus	1-gal	64	2%	5		Native Roots
Diospyros virginiana	2-0 BR	200	7%			NCFS
llex verticillata	1-gal			37	4%	Native Roots
Magnolia virginiana	1-gai			38	4%	Native Roots
		3,074	100%	875	100%	

Sandy Creek (Charles Williams)

Т	able 7. Vegetation	n Plot Criteria Att	ainment
c	harles Williams Stream	n, Wetland, and Buffe	er Site / 80
Vegetation Plot ID	Stream/Wetland Vegetation Survival Threshold Met?	Buffer Vegetation Survival Threshold Met?	Tract Mean
1	Yes	Yes	
2	Yes	Yes	
3	Yes	Yes	
4	Yes	Yes	
5	Yes	Yes	
6	Yes	Yes	Stream/Wetland Veg. = 100%
7	Yes	Yes	Buffer Veg. = 100%
8	Yes	Yes	
9	n/a	Yes	
10	n/a	Yes	1
11	n/a	Yes	
12	n/a	Yes]

Notes:

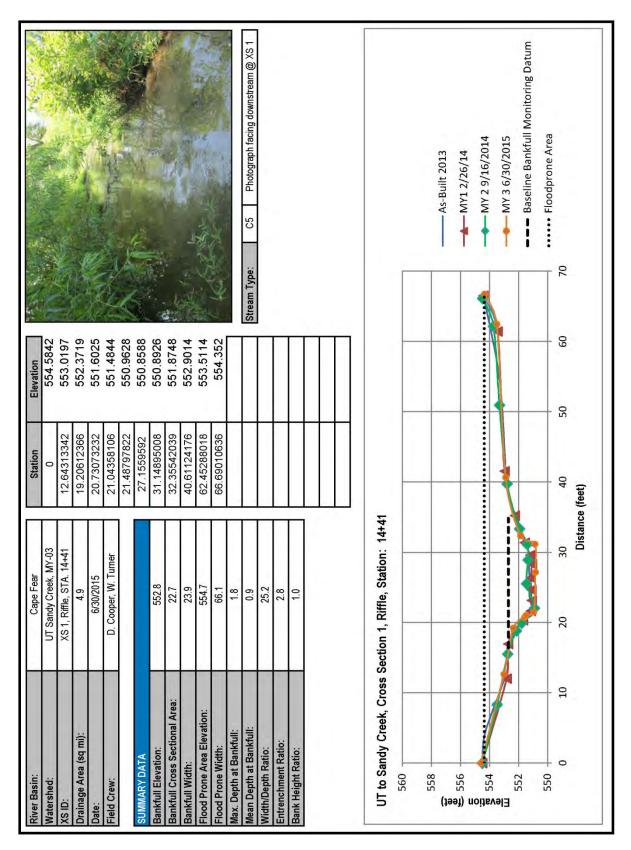
Supplemental planting at approximately 300 stems per acre was performed between December 2014 and March 2015.

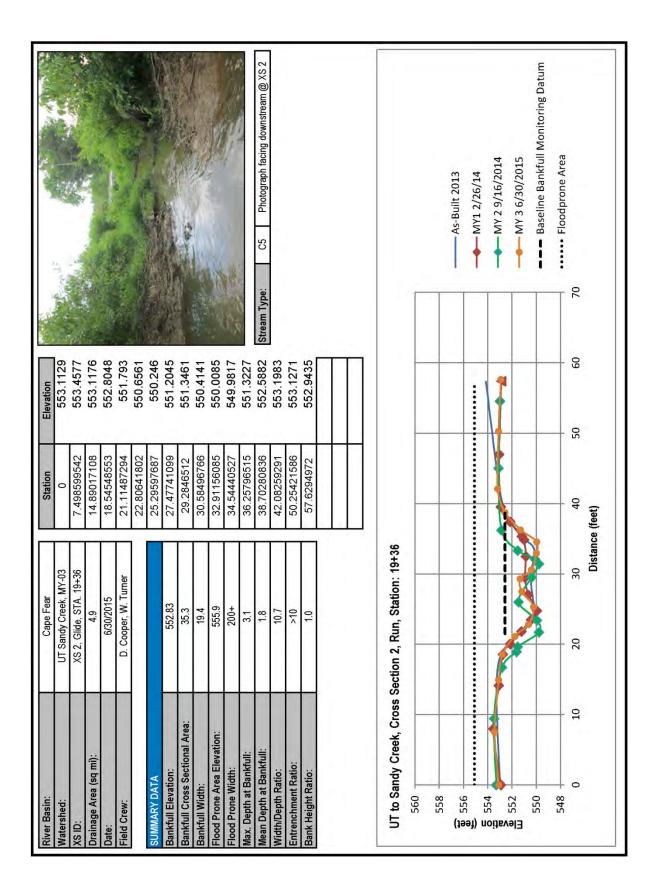
	. CVS Vegetation Plot Metadata liams Stream, Wetland, and Buffer Site / 80
Report Prepared By Date Prepared database name	David Cooper 10/19/2015 11:00 SandyCreekCharlesWilliams_80_RandolphCounty_Year 3.mdb
database location	P:\10000 Consultants\10227 Sungate\10227-017_Charles Williams Monitoring\CVS Database
computer name file size	WKST6 63438848
DESCRIPTION OF WORKSHEETS IN T	HIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor Vigor by Spp	Frequency distribution of vigor classes for stems for all plots. Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp Damage by Plot	Damage values tallied by type for each species. Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	80
project Name	Sandy Creek - Charles Williams
Description	Stream, Wetland and Buffer
River Basin	Cape Fear 1,850
length(ft) stream-to-edge width (ft)	5 to 12
area (sq m)	1,302
Required Plots (calculated)	1,502
Sampled Plots	12

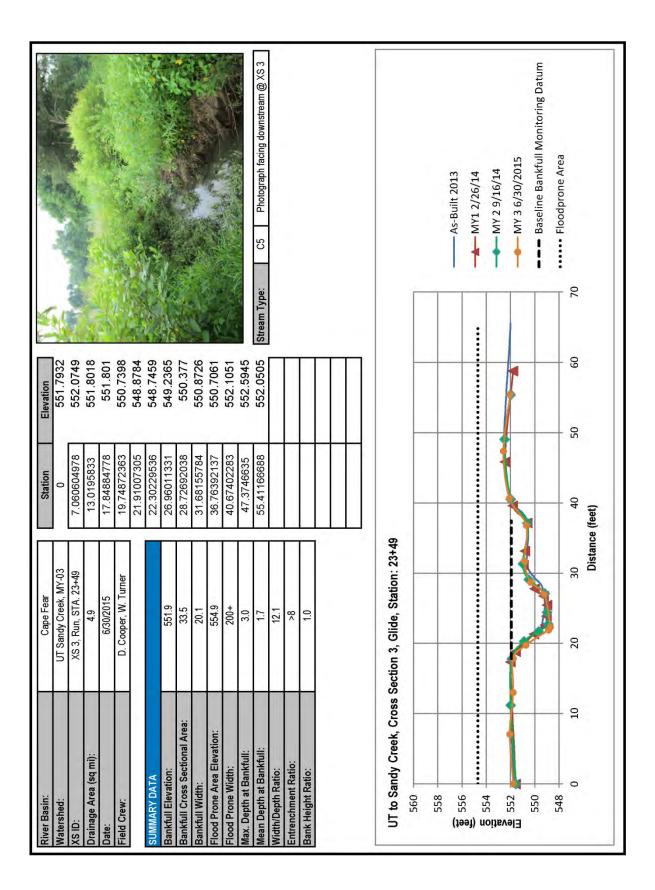
Table 9. Planted and Total Stem Counts (Species by Plot with Annual Means)

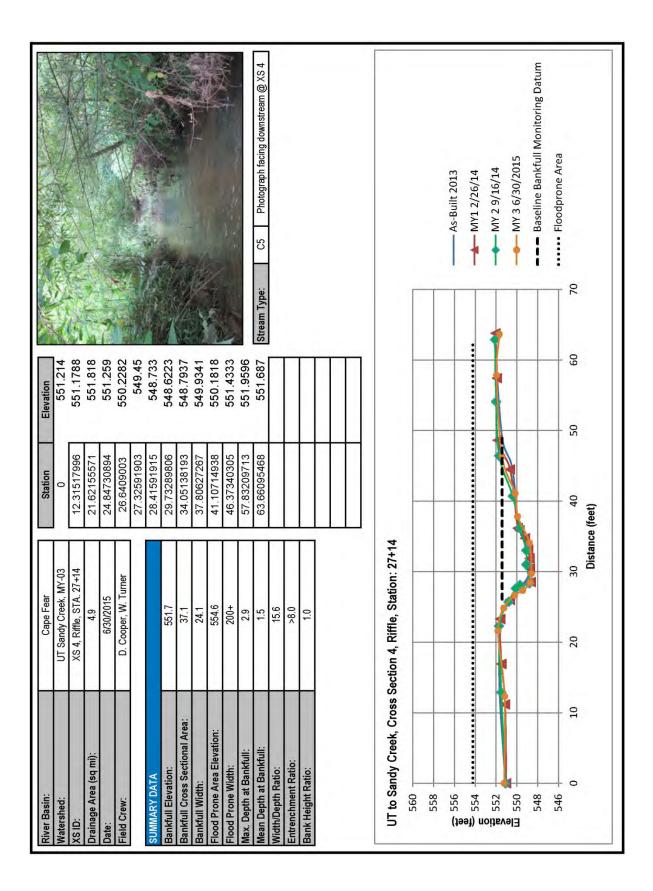
harles Williams Stream, N	Wetland, and Buffer Site	(80)														C	urrent Plo	t Data (N	(Y2 2015)																1	Annual M	/leans		
			08	30-01-00	001	080-	-01-0002	08	30-01-00	003	080-01	L-0004	08	0-01-00	05	080	-01-0006	(80-01-00	07	080-	01-0008	(080-01-00	009	080	-01-001	LO	080-01-0011		080-01-0	0012	M	Y2 (2015)		MY1 (20	014)	м	IYO (2014)
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS P	P-all T	PnoLS	P-all	Т	PnoLS P-a	II T	PnoLS	P-all	Т	PnoLS	P-all T	PnoL	S P-all	тι	PnoLS P	-all T	Pnol	S P-all	Т	PnoLS F	P-all 1	r P	noLS P-all T	Pr	oLS P-all	Т	PnoLS	P-all T	Pnc	oLS P-all	т	PnoLS	P-all T
cer negundo	boxelder	Tree																							10			6		6		(5		28		17	/ 	
etula nigra	river birch	Tree						1	1 1	. 1			2	2	2	1	1	1	3 3	3	2	2	2	2 2	2				2 2	2			13	13	13	2	2 7	2 11	11
arpinus caroliniana	American hornbeam	Tree			1	(1 1	1	1	1	1					2	2	3	1	1 !	<u>ک</u>	2
arya	hickory	Tree											2	2	2						1	1	1	1 1	1					4			3 4	4	11	5	5 !	4 ز	4
eltis laevigata	sugarberry	Tree																							2								2		4				
iospyros virginiana	common persimmon	Tree			2	2 1	1	2					1	1	1				1 1	1				3 3	3						1	1 :	1 7	7	10	4	4 /	4 1	1
raxinus pennsylvanica	green ash	Tree	14	14	20) 4	4	7 2	2 2	6	5	5 (6 2	2	2	3	3	3	6 6	9	1	1	1			2	2	2	2 2	2			41	41	58	24 2	24 33	3 33	33
ex decidua	possumhaw	shrub																							1										1				
uglans nigra	black walnut	Tree			1			1																											2				
iquidambar styraciflua	sweetgum	Tree			5	5																								1					6		1	4	
riodendron tulipifera	tuliptree	Tree				2	2	2 2	2 2	2 2	1	1 :	1						1 1	1	3	3	3	1 1	1						3	3 3	3 13	13	13	3	3 :	3 3	3
lagnolia virginiana	sweetbay	Tree														2	2	2															2	2	2	2	2 7	2 2	2
lyssa sylvatica	blackgum	Tree				1	1	1											2 2	2	2	2	2	2 2	2	1	1	1					8	8	8				
latanus occidentalis	American sycamore	Tree									1	1 :	1			1	1	1						1 1	1	2	2	2	3 3	3	1	1 :	1 9	9	9	2	2 7	2	
luercus	oak	Tree									1	1 :	1			1	1	1						1 1	1	2	2	2	2 2	2	3	3 3	3 10	10	10	10 1	.0 10	30	30
Quercus laurifolia	laurel oak	Tree									2	2	2																				2	2	2	2	2 7	2	
Quercus lyrata	overcup oak	Tree				3	3	3 1	1 1	. 1	4	4 4	4 3	3	3				1 1	1				2 2	2								14	14	14				
Quercus michauxii	swamp chestnut oak	Tree				1	1	1			1	1	1 1	1	1						1	1	1			3	3	3	2 2	2			9	9	9				
Quercus phellos	willow oak	Tree				2	2	2 4	4 4	4	2	2	2 2	2	2	2	2	2	2 2	2				2 2	2				1 1	1	1	1 :	1 18	18	18	9	9 9	,	
Quercus rubra	northern red oak	Tree									1	1	1																				1	1	1	1	1 7	1	
alix nigra	black willow	Tree								9								2																	11		10	l l	
Jnknown		Shrub or Tree				1	1	1											1 1	1													2	2	2			27	27
		Stem count	14	14	29	15	15 2	0 10	0 10	23	18	18 19	9 13	13	13	10	10	12 1	7 17	20	10	10	10 1	16 16	29	11	11	17	12 12	23	9	9 20	0 155	155	235	65 6	55 110	113	113 1
		size (ares)		1			1		1		1	Ĺ		1			1		1			1		1			1		1		1			12		12	-		12
		size (ACRES)		0.02			0.02	Ī	0.02		0.0	02		0.02			0.02		0.02		(0.02		0.02			0.02		0.02		0.02		T	0.30		0.30)	1	0.30
		Species count	1	1 1	5	5 8	8	9 5	5 5	6 6	9	9 9	97	7	7	6	6	7	8 8	8	6	6	6 1	10 10	13	6	6	7	6 6	9	5	5 8	3 16	16	22	12 1	12 15	9 ز	9
		Stems per ACRE	566.6	566.6	1174	607	607 809.	4 404.7	404.7	930.8	728.4 72	8.4 768.9	9 526.1	526.1	526.1	404.7	404.7 48	5 6 68	8 688	809.4	404.7	404.7 40	4.7 647	.5 647.5	1174	445.2	445.2	688	485.6 485.6 930	0.8 3	64.2 364.3	2 809.4	4 522.7	522.7 79	92.5 219	9.2 219.	.2 371	381.1	381.1 509

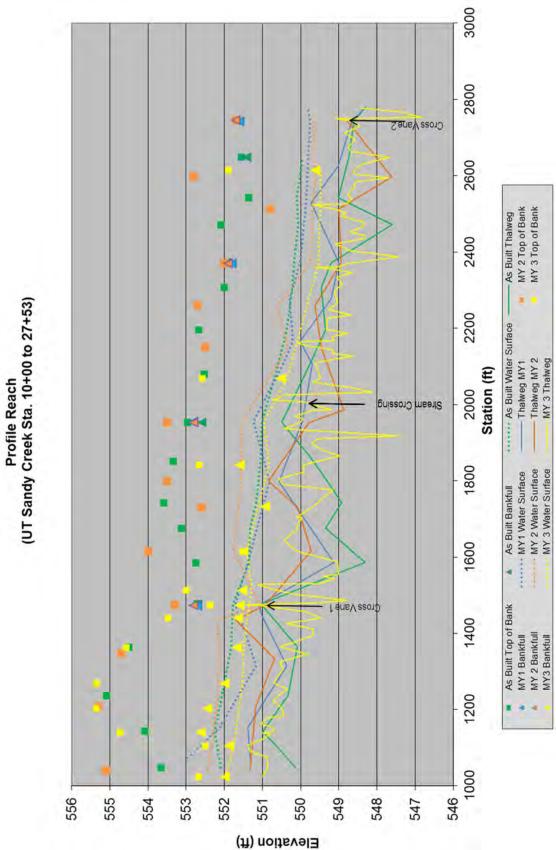
Color for Density

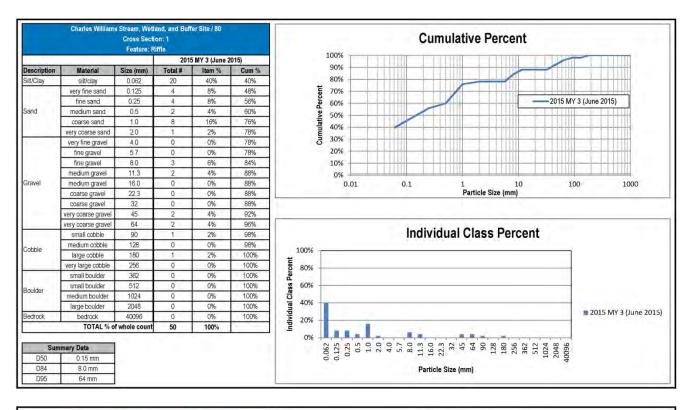

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

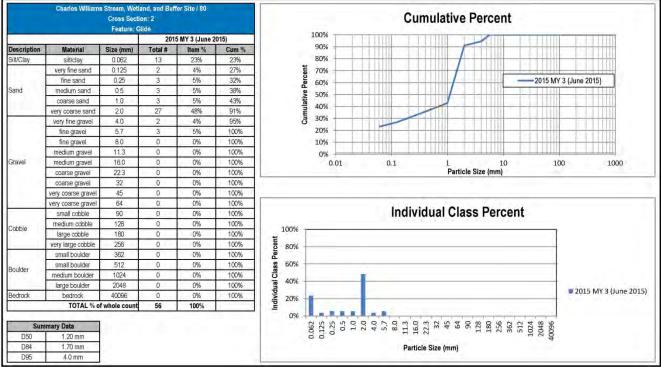

Fails to meet requirements by more than 10%

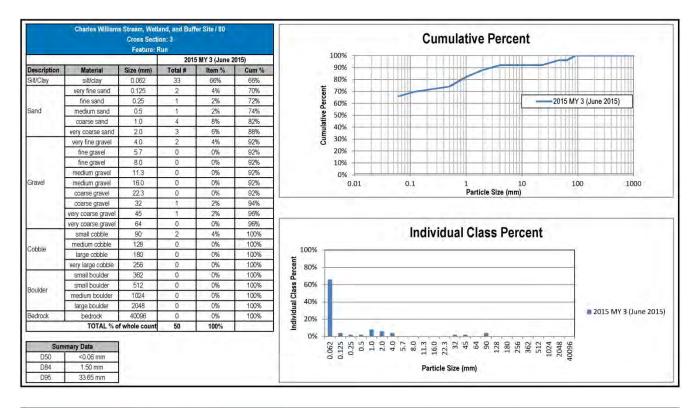

APPENDIX D

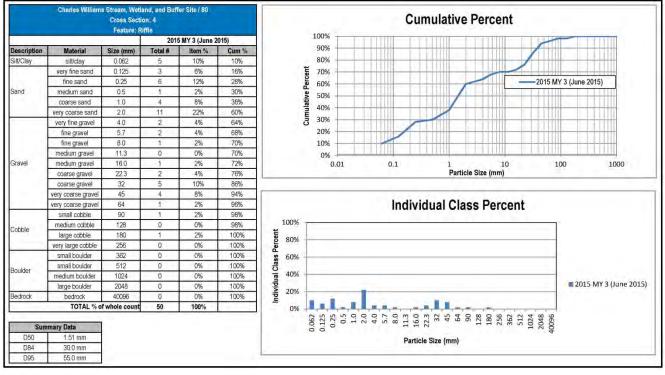

Stream Survey Data


Cross Section Plot Exhibits








Longitudinal Profile Plot Exhibit

Cross Section Pebble Count Exhibits

Mark V						Charle	es Willia					eam Da te / 80 - U			: 1,850 lir	near feet										
Image: Sector	Parameter	Gauge ²	R	Regional Cu	rve			Pre-Existin	g Conditio	n							Design				Monitorin	ig Baseline				
Abisery MonetanAnd Antione Ant	Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Мах	Min	Mean	Med	Max	SD ⁵	n
anditantion in the interval in the interval inter	Bankfull Width (ft)						25.2				1								25.2		22	23.5	24.9	24.9		2
'add then bed'add </td <td>Floodprone Width (ft)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>>300</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>>300</td> <td></td> <td>63</td> <td>>131</td> <td>200+</td> <td>200+</td> <td></td> <td>2</td>	Floodprone Width (ft)						>300				1								>300		63	>131	200+	200+		2
Static constraint of a bial o	Bankfull Mean Depth (ft)						1.58				1								1.59		1	1.3	1.5	1.5		2
AbiaA	¹ Bankfull Max Depth (ft)						2.6				1								2.6		1.7	2.3	2.8	2.8		2
AddA	Bankfull Cross Sectional Area (ft ²)						40.0				1								40		21.7	28.9	36.1	36.1		2
<td< td=""><td>Width/Depth Ratio</td><td></td><td></td><td></td><td></td><td></td><td>15.8</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15.8</td><td></td><td>>15</td><td>>15</td><td>>15</td><td>>15</td><td></td><td>2</td></td<>	Width/Depth Ratio						15.8				1								15.8		>15	>15	>15	>15		2
besic Matcad, it	Entrenchment Ratio						>15				1								>15		2.9	7.5	8.4	>8		2
ABR (not of a b)ABR	¹ Bank Height Ratio						1.0				1								1.0		1.0	1.0	1.0	1.0		2
and the base of the base	Profile							• •	-												• •					-
Image: Proper state	Riffle Length (ft)																				39	51.5	51.5	64		2
Image: Probation of the state of the sta	Riffle Slope (ft/ft)						0.013				1								0.013		0.26	0.28	0.28	0.3		2
President free stands fre	Pool Length (ft)					8.3	30.5		63.7										30.5		168	198	196	232	27.5	4
value value <th< td=""><td>Pool Max depth (ft)</td><td></td><td></td><td></td><td></td><td></td><td>3.4</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.4</td><td></td><td>3.1</td><td>3.5</td><td>3.4</td><td>4.25</td><td></td><td>4</td></th<>	Pool Max depth (ft)						3.4				1								3.4		3.1	3.5	3.4	4.25		4
Image: Sector of the sector	Pool Spacing (ft)					56.0	116.0		94.0										116.4		158	372	239	719		3
Image: Section of the secting the section of the section of the	Pattern	•		•			•				•															
All of the series of the se	Channel Beltwidth (ft)					31.7	44.9		62.3									31.7	44.9	62.3	40	74.5	78.5	101	24.8	4
And marking watching watc	Radius of Curvature (ft)					15.0	37.8		95.0									15	37.8	95	19	60.5	58	107	31.5	4
Mender Wein Real Image: Participant of the state o	Rc:Bankfull width (ft/ft)					0.6	1.5		3.8									0.6	1.5	3.8	0.9	2.7	2.6	4.8	1.4	4
Image: constraint of the second se	Meander Wavelength (ft)					73.0	133.8		216.0									73	133.8	216	86	149.25	121.5	268	70.1	4
Reach Shers Storagency IIIImage: Storagency IIIIImage: Storagency IIIIImage: Storagency IIIIImage: Storagency IIIIImage: Storagency IIIIImage: Storagency IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Meander Width Ratio					2.9	5.3		8.6									1.3	1.8	2.5	3.9	6.7	5.5	12	3.1	4
Reach Shers Storagency IIIImage: Storagency IIIIImage: Storagency IIIIImage: Storagency IIIIImage: Storagency IIIIImage: Storagency IIIIImage: Storagency IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				•	•			•	•	•	•		•	•	•	•			•	•		•	•	•	•	•
Initial constraintsImage: Solution of the second seco	Transport parameters					-						_														
Stean Power (tarspot capacity) WindImage: Stean Power (tarspot capacity) Wind																										
Additional Reach ParametersSection of the section of th								2	2.0														2	2.0		
Respectively (a) $\begin{tity}{l}$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																										
Bakkl VectorImage: Sector<	Additional Reach Parameters	_	-			-															-					
Bakkul DischargiesImage: Provide the section of the sect	Rosgen Classification							(C5										C5				(C5		
Valley lengthImage: state of the								3	3.9										3.75				3	.05		
Channel ThankweigMM18501850185018501850Sindusity (IMMM <td< td=""><td>Bankfull Discharge (cfs)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td>50.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Bankfull Discharge (cfs)							15	50.0																	
SinusityImage: section of the section of	Valley length (ft)							19	961																	
Water Slope (Anne) (Mather Slope (A	Channel Thalweg length (ft)							18	350										1850				18	350		
BF slope (M)Image: Constraint of the cons	Sinuosity (ft)							1.	.06										1.06				1	.06		
³ Bankfull Floodplain Area (acres) Image: Acres of the constraint of the	Water Surface Slope (Channel) (ft/ft)							0.0	0014										0.0014				0.0	0013		
4% of Reach with Eroding Banks11111Channel Stability or Habitat Metric111111111	BF slope (ft/ft)																		0.0013				0.0	0013		
Channel Stability or Habitat Metric	³ Bankfull Floodplain Area (acres)																									
	⁴ % of Reach with Eroding Banks																									
Biological or Other	Channel Stability or Habitat Metric																									
	Biological or Other Shaded cells indicate that these will typically not be filled in.																									

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Charles Williams Stream Wetland and Buffer Site / 80 - 11T to Sandy Creek: 1 850 linear feet

			Char	ies wii	liams a	stream,	vvetia	nd, and	α Βυπε	er Site / a	80-UI 1	o San	dy Creek	: 1,850	inear	Teet									
Parameter		Р	re-Exis	sting C	onditio	on			Re	eference	e Reach	(es) D	ata				D	esign				As-b	uilt/Ba	seline	
¹ Ri%/Ru%/P%/G%/S%	1%	84%	4%	11%	0%															11%	60%	14%	15%	0%	
¹ SC%/Sa%/G%/C%/B%/Be%	7%	83%	10%	0%	0%	0%																			
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.12	0.34	0.55	1.70	3.60	<2.0	<2.0																		
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	0	0	0	0	1850															0	0	200	0	1650	
³ Incision Class <1.2 / 1.2 -1.49 / 1.5 - 1.99 / >2.0	1850	0	0	0																1850	0	0	0		

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross- sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

		Table	e 11a.	Moni		Data - Dime es Williams Str											ross	Sectio	ns)								
			Cross	Section '	1 (Riffle)				Cross	Section 2 ((Glide)					Cross	Section	3 (Run)					Cross	Section 4	(Riffle)		
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5 MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																											
Bankfull Width (ft)	22.0	22.6	23.9	24.0			19.6	20.5	19.4	21.8				22.6	18.8	20.1	22.4				24.9	24.5	24.1	24.2			
Floodprone Width (ft)	63.0	65.4	66.1	66.1			200+	200+	200+	200+				200+	200+	200+	200+				200+	200+	200+	200+			
Bankfull Mean Depth (ft)	1.0	1.0	0.9	1.1			1.7	1.6	1.8	1.7				1.6	1.5	1.7	1.6				1.5	1.5	1.5	1.8			
Bankfull Max Depth (ft)	1.7	1.6	1.8	1.9			2.5	2.8	3.1	2.8				2.8	2.8	3	3.16				2.8	2.9	2.9	3.1			
Bankfull Cross Sectional Area (ft ²)	21.7	22.5	22.7	25.6			33.4	32.8	35.3	36.7				36.4	29.0	33.5	36.5				36.1	37.8	37.1	42.7			
Bankfull Width/Depth Ratio	22.3	22.7	25.2	22.6			11.5	12.9	10.7	12.9				14.0	12.2	12.1	13.7				16.6	15.8	15.6	13.7			
Bankfull Entrenchment Ratio	2.9	2.9	2.8	2.8			>10.0	>10.0	>10	>10				>8.0	>8.0	>8.0	>8.0				>8.0	>8.0	>8.0	>8.0			
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.0			1.1	1.1	1.0	1.0				1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0			
Based on current/developing bankfull feature ²																											
Record elevation (datum) used																											
Bankfull Width (ft)																											
Floodprone Width (ft)																											
Bankfull Mean Depth (ft)			These c	ells may	ormay	not																					
Bankfull Max Depth (ft)			given y	ear. See	ion in an footnot	y e 2																					
Bankfull Cross Sectional Area (ft ²)			below																								
Bankfull Width/Depth Ratio																											
Bankfull Entrenchment Ratio																											
Bankfull Bank Height Ratio																											
Cross Sectional Area between end pins (ft ²)																											
d50 (mm)																											

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

2 = Based on the elevation of any dominant depositional feature that develops and is observed at the time of survey. If the baseline datum remains the only significant depositional feature

then these two sets of dimensional parameters will be equal, however, if another depositional feature of significance develops above or below the baseline bankfull datum then this should be tracked and quantified in these cells.

													Ionito																						
									Ch	arles W	lilliams	Stream	, Wetlan	d, and I	Buffer S	Site / 80	- UT to S	Sandy C	Creek: 1	,850 lin	ear feet									_					
Parameter			Bas	eline					М	IY-1					М	IY-2					М	IY-3	1			M	Y- 4	1			•	MY- :			
Dimension and Substrate - Riffle only	Min	Mean	Med	Мах	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	22	23.5	24.9	24.9		2	22.6	23.5	24.5	24.5		2	23.9	24.0	24.0	24.1		2	24.0	24.1	24.2	24.2	2												
Floodprone Width (ft)	63	>131	200+	200+		2	65.4	>132.7	200+	200+		2	66.1	>133	200+	200+		2	66.1	>133	200+	200+	2											\neg	
Bankfull Mean Depth (ft)	1	1.3	1.5	1.5		2	1.0	1.3	1.5	1.5		2	0.9	1.2	1.2	1.5		2	1.1	1.45	1.8	1.8	2												
¹ Bankfull Max Depth (ft) 1.7	2.3	2.8	2.8		2	1.6	2.5	2.9	2.9		2	1.8	2.35	2.35	2.9		2	1.9	2.5	3.1	3.1	2												
Bankfull Cross Sectional Area (ft ²)	21.7	28.9	36.1	36.1		2	22.5	30.5	37.8	37.8		2	22.7	29.9	29.9	37.1		2	25.6	34.15	42.7	42.7	2												
Width/Depth Ratio	>15	>15	>15	>15		2	>15	>15	>15	>15		2	>15	>15	>15	>15		2	13.7	18.15	22.6	22.6	2												
Entrenchment Ratio	2.9	7.5	8.4	>8		2	2.9	>5.4	>8	>8		2	2.8	>5.4	>8	>8		2	2.8	>5.4	>8	>8	2												
¹ Bank Height Ratio	1.0	1.0	1.0	1.0		2	1.0	1.0	1.0	1.0		2	1.0	1.0	1.0	1.0		2	1.0	1.0	1.0	1.0	2												
Profile																																			
Riffle Length (ft)	39.0	51.5	51.5	64.0		2	53.13	75.34	78.7	91	14.5	6	88.9	127.7	123.7	160.1	26.9	5	88.9	127.7	123.7	160.0 26.88	5												
Riffle Slope (ft/ft)	0.003	0.003	0.003	0.003		2	0.003	0.003	0.003	0.003	0.0	6	0.004	0.008	0.007	0.016	0.004	5	0.000	0.0012	0.001	0.003 0.001	5												
Pool Length (ft)	168.0	198.0	196.0	232.0	27.5	4	283.6	283.6	283.6	283.6		2	115.8	127.7	127.7	139.6		2	115.8	127.7	127.7	139.6	2												
Pool Max depth (ft)	3.1	3.5	3.4	4.3		4	0.8	1.5	1.5	2.3		2	2.0	2.0	2.0	2.0		2	1.4	1.65	1.88	1.88	2												
Pool Spacing (ft)	158.0	372.0	239.0	719.0		3	283.6	283.6	283.6	283.6		1	975.2	975.2	975.2	975.2		1	975.2	975.2	975.2	975.2	1												
Pattern																																			
Channel Beltwidth (ft)	40.0	74.5	78.5	101.0	24.8	4																													
Radius of Curvature (ft)	19.0	60.5	58.0	107.0	31.5	4										Bott	orn data	will not		lly bo co	lloctod	unless visual o	lata dim	oncion	al data i	or profile	o data								
Rc:Bankfull width (fl/fl)	0.9	2.7	2.6	4.8	1.4	4										Falle	en uala	WIII HOL				cant shifts from			ai uala i		e uala								
Meander Wavelength (ft)	86.0	149.3	121.5	268.0	70.1	4																													
Meander Width Ratio	3.9	6.7	5.5	12.0	3.1	4																													
Additional Reach Parameters																																			
Rosgen Classification				C5						C5						C5						C5											\rightarrow		
C hannel Thalweg length (ft)				748						748						748						748											\rightarrow	ļ	
Sinuosity (ft)				.06						.06						.06						1.06											\rightarrow		
Water Surface Slope (Channel) (ft/ft)				0013						0013						0018						0017											\rightarrow	ļ	
BF slope (f/ft)		<u> </u>	1	0013		_		r	1	0013	1		-	1	1	0010		_		1	1	0015								-			\rightarrow		
³ Ri% / Ru% / P% / G% / S%		80%	15%				5%	80%	15%				5%	80%	15%	L			5%	80%	15%												\rightarrow		
³ SC% / Sa% / G% / C% / B% / Be%																									-	-	-			-	<u> </u>		\rightarrow		
³ d16 / d35 / d50 / d84 / d95 /																									-	-	-				<u> </u>		\rightarrow		
² % of Reach with Eroding Banks				0						0			<u> </u>			0						0			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		\rightarrow		
C hannel Stability or Habitat Metric																									<u> </u>	<u> </u>					<u> </u>		\rightarrow		
Biological or Other Shaded cells indicate that these will typically not be filled in.																																			

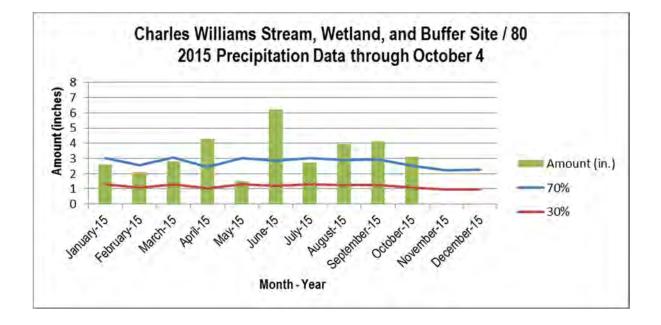
Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

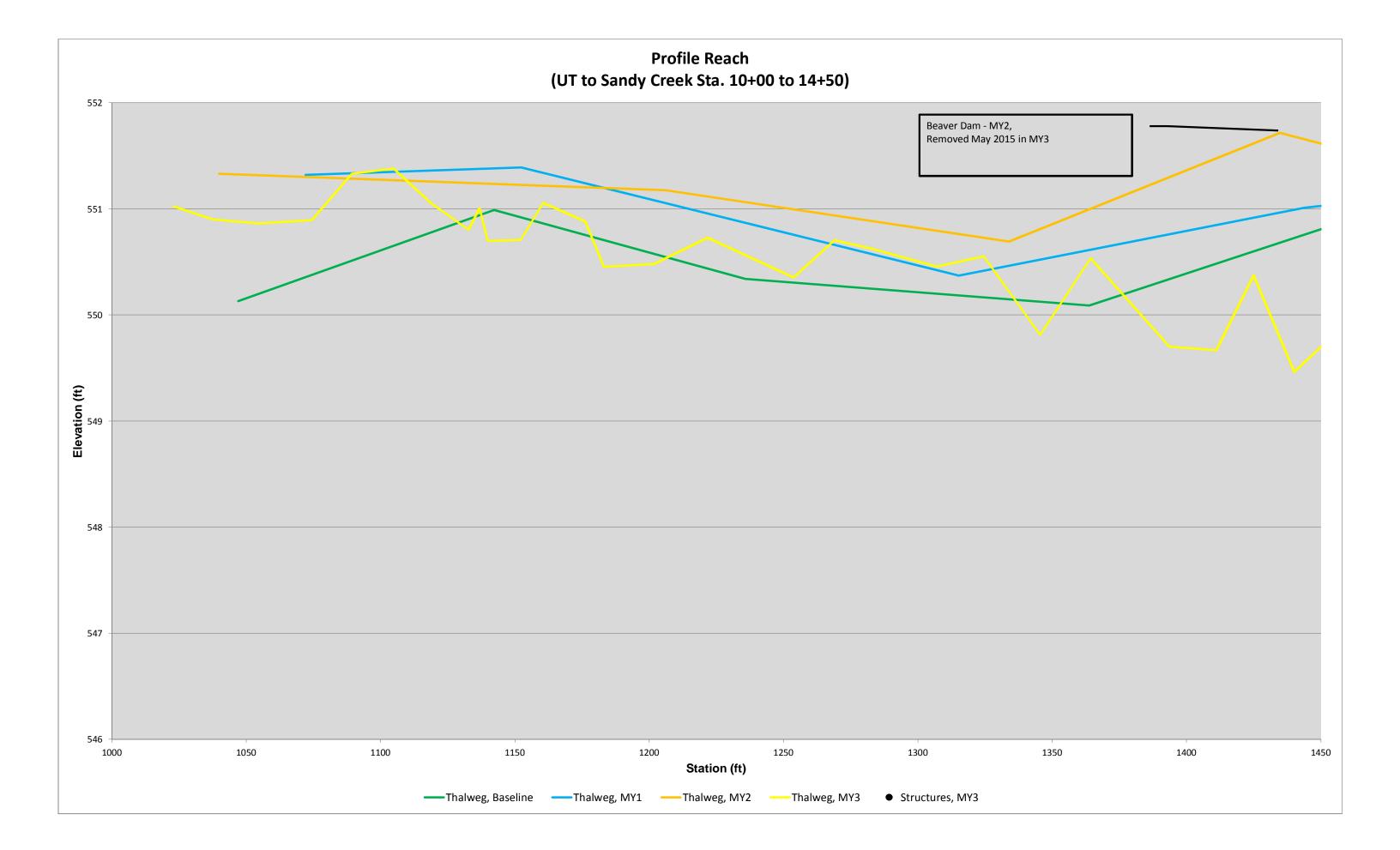
3 = Riffle, Run, Pool, Glide, Step; Sitl/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

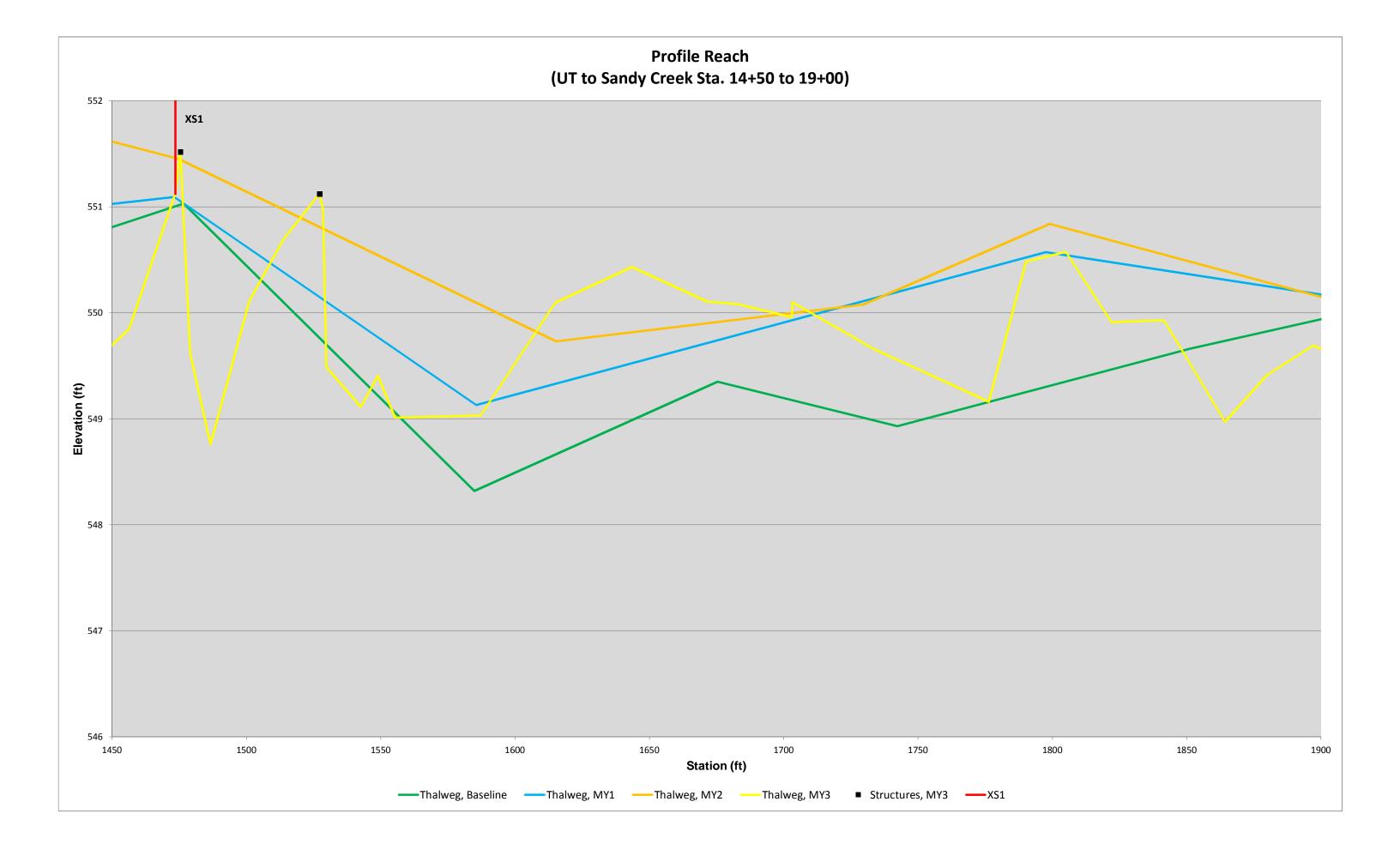
4. = Of value/needed only if the n exceeds 3

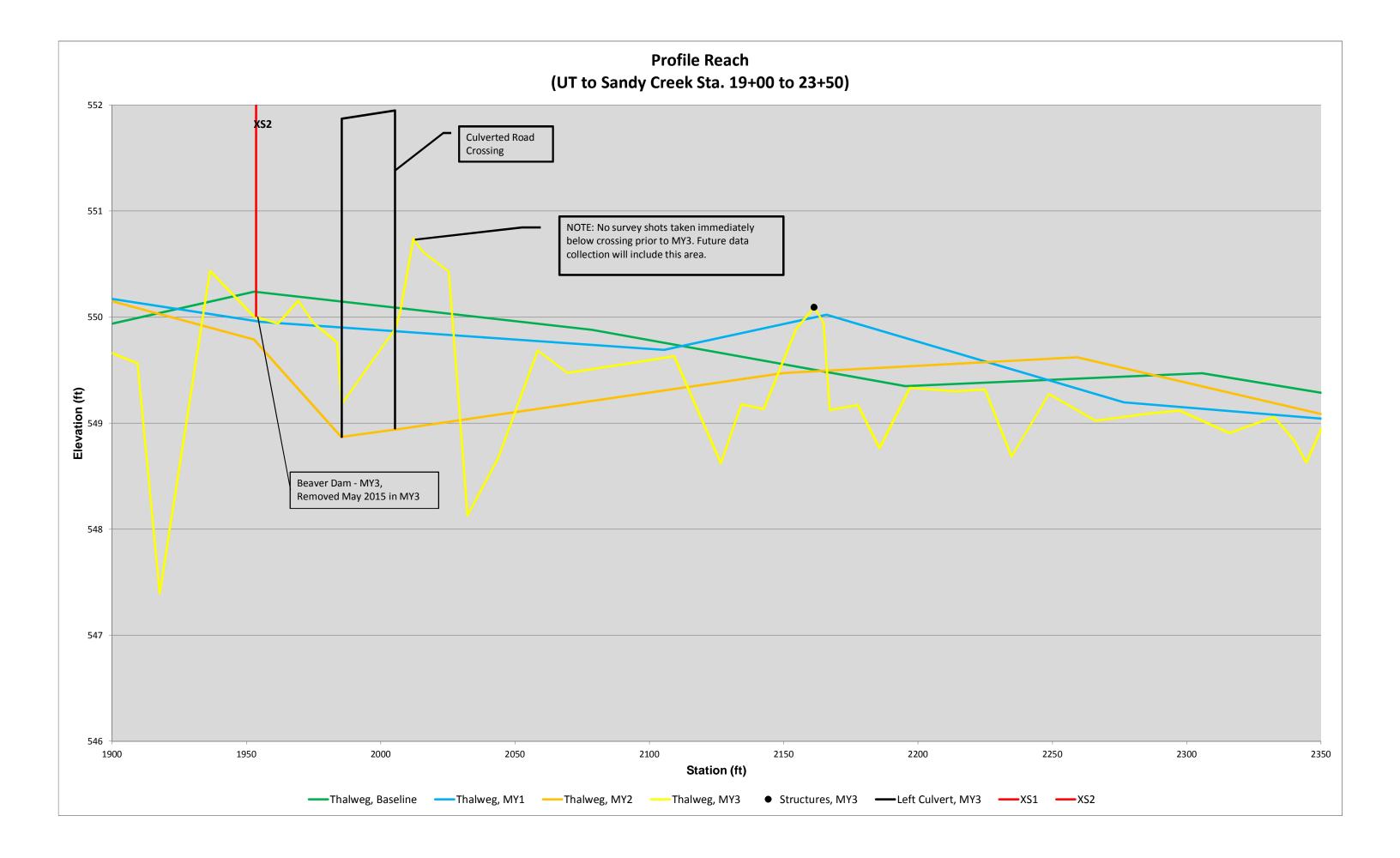

APPENDIX E

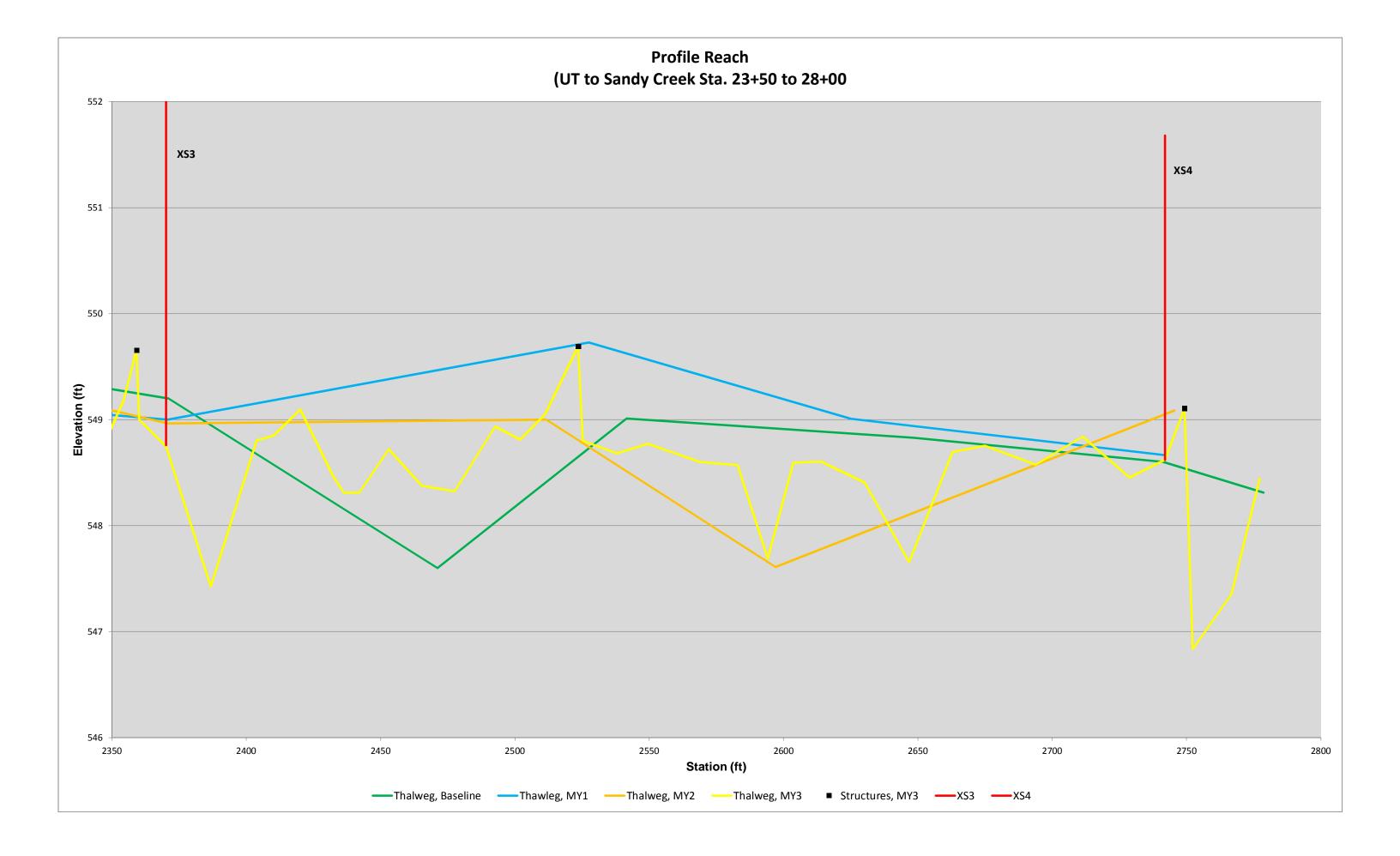
Hydrology Data

Table	12.	Veri	ficati	on c	of Ba	ankful	I Eve	nts	


Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet


intoar root			
Date of Data Collection	Date of Occurrence	Method	Photo # (if available)
11/6/2013	unknown	Crest Gauge	Not Available
3/6/2014	unknown	Visual On-site (wrack)	Not Available
9/16/2014	unknown	Crest Gauge	Not Available
4/17/2015	4/17/2015	Visual On-site (active overbank event)	Overbank 1
6/30/2015	unknown	Visual On-site (wrack, sediment staining, alluvial deposits)	Overbank 2, 3, 4




APPENDIX F

Detailed Thalweg Profile

